

SIMS PUMP Company

Since 1919

1314 Park av., Hoboken, New Jersey 07030 (201) 792-0600 (N.J.) (212) 227-7661 (N.Y.) FAX (201) 792-4803 E-mail SIMSPUMP @ aol.com

Web Site: <u>www.simsite.com</u>

MIL SPEC 901D and MIL-STD-167-1 NS16486-2A20

Simsite ® Structural Composite Pumps.

NAVY STANDARD COMPOSITE Pumps
Test Results
1.5 x 1 - 8, 20 HP, 3570 RPM.
120 GPM 250 Ft

SIMSITE ® NAVY Series Pumps

October 2005

SIMS Structural Composite NAVY Standard Pump <u>NS16486-2A20</u> SIZE: 1.5x1-8

Contents

A.	Medium Weight Shock and Vibration	
	Test Report. NU Laboratories, Inc.	1
В.	Hydraulic Tests.	
	Pump Pictures	17
	Pre-Test Inspection Report	20
	Post-Test Inspection Report	22
	Motor Information	24
	SIMSITE Structural Composite Pump	
	NAVY Standard Composite Pump.	
	1.5x1-8 20 hp 3570 rpm	26
	Pre-Test vs. Post Test Results	28
	Pump Curves	29
	Pump Part List	30
	Drawings	31

Report No. 10401.1 No. of Pages 16

Medium Weight Shock and Vibration Test Report on 1 ½" x 1" x 8 20 HP NS 16486-2SA20 Pump for Sims Pump Valve Company Hoboken, NJ

NU LABORATORIES, INC. 312 Old Allerton Road, Annandale, NJ (908) 713-9300

WWW.NULABS.COM E-Mail: sales@nulabs.com

25 October 2005

Prepared By	Checked By	Approved By
S. Patel	T. D. Miller, P.E.	R.D. McAdoo
Milen Palet	Hetherthe	A Mal
October 27, 2005	October 27, 2005	October 27, 2005

TABLE OF CONTENTS

1.	Purpose of Test	3
2.	Manufacturer	
3.	Manufacturer's Type or Model No	
4.	Specifications	
5.	Number of Items Tested	3
6.	Security Classification of Items	3
7.	Date Testing Completed	3
8.	Test Conducted By	3
9.	Test Witnesses	4
10.	Disposition of Test Items	4
11.	Abstract	4
12.	Medium Weight Shock Test Description	4
13.	Vibration Test Description	6
	Figures 1-10	9-15
	List of Apparatus	16

1. PURPOSE OF TEST

The purpose of this test was to demonstrate that the 1 ½" x 1" x 8" 20HP, NS 16486-2SA20 Pump, herein referred to as the "Pump," complied with the requirements of MIL-S-901D for a Grade A, Class I, Type A, nine (9) blow medium weight shock test and the requirements of MIL-STD-167-1 when subjected to vibration through the frequency range of 4 Hz through 50 Hz in each of the three (3) major axes.

2. MANUFACTURER

Sims Pump Valve Company 1314 Park Avenue Hoboken, NJ 07030

3. MANUFACTURER'S TYPE OR MODEL NO.

1 ½" x 1" x 8" 20HP, NS 16486-2SA20 Pump

4. **SPECIFICATIONS**

4.1 **MILITARY**

MIL-S-901D (NAVY) Military Specification, Shock Tests, H.I. (High Impact); Shipboard Machinery, Equipment and Systems, Requirements for, dated 17 March 1989.

MIL-STD-167-1 (SHIPS) Military Standards Mechanical Vibrations of Shipboard Equipment, 19 June 1987

4.2 SIMS PUMP VALVE COMPANY

Purchase Order Number: 4047

5. NUMBER OF ITEMS TESTED

One (1)

6. SECURITY CLASSIFICATION OF ITEMS

Unclassified

7. DATE TESTING COMPLETED

13 October 2005

8. TEST CONDUCTED BY

NU Laboratories, Inc. 312 Old Allerton Road Annandale, NJ 08801 (NAVY Certified Shock Test Facility by NAVSEAINST 9491.1C)

NU Laboratories, Inc. Test Report 10401.1 a Noise Unlimited Company Page 3

9. TEST WITNESSES

Vladimir Spektor, Sims Pump representative—shock only. John Franklin, Sims Pump representative—shock only. John Kozel, Sims Pump representative—shock only. Eric Burachinsky, Sims Pump representative—shock only. Robert Coseano, NSWCCD representative—shock only.

10. DISPOSITION OF TEST ITEMS

The Pump was returned to Sims Pump Company.

11. ABSTRACT

The Pump was subjected to a total of nine (9) medium weight shock blows in accordance with the referenced test specifications. Visual inspections, performed after each shock blow, revealed no obvious physical damage, loss in pressure, or leakage. Refer to Section 12 for details.

The Pump was subjected to vibration through the frequency range of 4 Hz to 50 Hz in each of the three (3) major axes. Visual inspections, performed after each, major axis of vibration, revealed no obvious physical damage, loss in pressure, or leakage. Refer to Section 13 for details.

12. MEDIUM WEIGHT SHOCK TEST DESCRIPTION

12.1 ACCEPTANCE CRITERIA

The Pump shall be considered to have failed the shock test if any portion of the equipment comes adrift or otherwise becomes a hazard to personnel, or equipment is not able to perform its Grade A specified function due to performance degradation in accordance with MIL-S-901D Section 3.1.10.1.

12.2 TEST SETUP

Upon receipt a visual inspection performed on the Pump revealed no obvious physical damage or discrepancy.

The Pump was weighed using a portable platform scale and the weight was recorded in the test log. The weight of the Pump was found to be 534 pounds.

The Pump was attached to a 48" x 48" x 1 ½" steel plate using four (4) 7/8"-8 Grade 5 bolts torqued to 150 lbs-ft. The entire assembly was then secured to fixture Figure 13 of MIL-S-901D on the medium weight shock machine orientated in the first major axis of test. A 17.6 pound dummy mass was attached to the suction side of the Pump using six (6) 1/2"-13 B7 threaded rod, nuts and washers torqued to 45 lbs-ft. A 10 pound dummy mass was attached to the discharge side of the Pump using four (4) 1/2"-13 B7 threaded rod, washers, and nuts torqued to 45 lbs-ft. The total weight on the anvil table was found to be 2.128.5 pounds. Refer to Table 1 for the medium weight shock test weights and Figure 1 for photographs of the test setup.

Table 1: Medium Weight Shock Test Weights

Pump	534 lbs.
48" x 48" x 1 ½" Steel Plate	970 lbs.
Dummy Mass - Suction	17.5 lbs.
Dummy Mass - Discharge	10 lbs.
Mounting Bolts	3 lbs.
Two (2) Half Rails	166 lbs.
Eight (8) 1/2 Rail Shoes	32 lbs.
Four (4) T-Blocks	16 lbs.
Figure 13	380 lbs.
Figure 16	1,470 lbs.

Test Report 10401.1 a Noise Unlimited Company Page 4

12.3 TEST CONDITIONS

Throughout the shock test the Pump was monitored for any leaks or loss in pressure

Observations were made by Sims Pump, NSWC, and NU Laboratories, Inc. representatives.

During blows marked as "CONDITION A" the Pump was flooded with water, energized with 440 VAC, three (3) phase, 60 Hz power and operating with the discharge pressure adjusted to 108 psig.

During blows marked as "CONDITION B" the Pump flooded with water, and de-energized.

12.4 **BLOW #1 - "CONDITION A"**

- 12.4.1 Conditions: 1.25' hammer height, Group #I, 3.0" anvil table travel, Figure 13 of the referenced specifications.
- Observations: A post-blow visual inspection revealed no obvious physical damage. No leakage or loss in 12.4.2 pressure was reported.
- 12.4.3 Action: Testing was continued.

BLOW #2 - "CONDITION B" 12.5

- Conditions 2.25' hammer height, Group #II, 3.0" anvil table travel, Figure 13 of the referenced specifications.
- Observations: A post-blow visual inspection revealed no obvious physical damage. No leakage or loss in 12 5 2 pressure was reported.
- Action: Testing was continued 12.5.3

BLOW #3 - "CONDITION A" 12.6

- 12.6.1 Conditions: 2.25' hammer height, Group #III, 1.5" anvil table travel, Figure 13 of the referenced specifications.
- Observations: A post-blow visual inspection revealed no obvious physical damage. No leakage or loss in 12.6.2 pressure was reported.
- Action: Testing was continued. 12.6.3

The entire assembly was then removed from fixture Figure 13 of MIL-S-901D, and reattached to fixture Figure 16 of MIL-S-901D of the referenced specifications, orientated with the side of the Pump facing down. The total weight on the anvil table was found to be 3,218.5 pounds. Refer to Figure 1 for a photograph of the test setup and Table 1 for a breakdown of the test weights.

BLOW #4 - "CONDITION A" 12.7

- 12.7.1 Conditions: 1.5' hammer height, Group #I, 3.0" anvil table travel, Figure 16 of the referenced specifications.
- 12.7.2 Observations: A post-blow visual inspection revealed no obvious physical damage. No leakage or loss in pressure was reported.
- 12.7.3 Action: Testing was continued.

12.8 **BLOW #5 - "CONDITION B"**

- Conditions: 2.5' hammer height, Group #II, 3.0" anvil table travel, Figure 16 of the referenced 12.8.1 specifications.
- 12.8.2 Observations: A post-blow visual inspection revealed no obvious physical damage. No leakage or loss in pressure was reported.
- 12.8.3 Action: Testing was continued.

NU Laboratories, Inc. Test Report 10401.1 Page 5

12.9 BLOW #6 - "CONDITION A"

- 12.9.1 Conditions: 2.5' hammer height, Group #III, 1.5" anvil table travel, Figure 16 of the referenced specifications.
- 12.9.2 Observations: A post-blow visual inspection revealed no obvious physical damage. No leakage or loss in pressure was reported.
- 12.9.3 Action: Testing was completed.

The entire assembly was removed from fixture Figure 16 of MIL-S-901D, rotated 90° and reattached to MIL-S-901D Figure 16 with the suction side of the Pump facing down; see Figure 1. The total weight on the anvil table remained at 3,218.5 pounds.

12.10 BLOW #7 - "CONDITION A"

- 12.10.1 Conditions: 1.5' hammer height, Group #I, 3.0" anvil table travel, Figure 16 of the referenced specifications.
- 12.10.2 Observations: A post-blow visual inspection revealed no obvious physical damage. No leakage or loss in pressure was reported.
- 12.10.3 Action: Testing was continued.

12.11 BLOW #8 - "CONDITION B"

- 12.11.1 Conditions: 2.5' hammer height, Group #II, 3.0" anvil table travel, Figure 16 of the referenced specifications.
- 12.11.2 Observations: A post-blow visual inspection revealed no obvious physical damage. No leakage or loss in pressure was reported.
- 12.11.3 Action: Testing was continued

12.12 BLOW #9 - "CONDITION A"

- 12.12.1 Conditions: 2.5' hammer height, Group #III, 1.5" anvil table travel, Figure 16 of the referenced specifications.
- 12.12.2 Observations: A post-blow visual inspection revealed no obvious physical damage. No leakage or loss in pressure was reported.
- 12.12.3 Action: Testing was continued.

Refer to the Factory Test Records, Figures 2, and the Shock Acceptance Form, Figure 3, for additional information.

13. VIBRATION TEST DESCRIPTION

13.1 TEST SETUP

Upon completion of the shock test the Pump assembly was removed from Figure 16 of MIL-S-901D and attached to the vibration machine. Refer to Figure 4 for the photographs of the test setups.

An accelerometer was attached to the Pump, orientated in the direction of vibration, to aid in the detection of response prominences.

13.2 TEST CONDITIONS

The Pump was subjected to vibration in each of the three (3) major axes in "CONDITION A"; the Pump was flooded with water, energized with 440 VAC, three (3) phase, 60 Hz power and operating with the discharge pressure adjusted to 108 psig.

NU Laboratories, Inc.

Test Report 10401.1

a Noise Unlimited Company

13.3 FIRST MAJOR AXIS OF VIBRATION (FRONT TO BACK AXIS)

13.3.1 **Exploratory Vibration**

The Pump, was vibrated from 4 Hz through 50 Hz with a vibration input of 0.020 ± 0.004 inches (double amplitude) to determine response prominences and from 34 Hz through 50 Hz with a vibration input of 0.006 + 0.000/-0.002 (double amplitude) to determine response prominences. The change in frequency was made in discrete intervals of 1 Hz and the vibration was maintained at each frequency for approximately 15 seconds. No response prominences were noted.

The table input vibration levels and the accelerometer output vibration levels at each frequency were recorded on the Vibration Test Data Sheets

13.3.2 Variable Frequency Vibration

The Pump was vibrated from 4 Hz to 50 Hz with input amplitudes as shown in Table 2. The change in frequency was made in discrete intervals of 1 Hz and the vibration was maintained at each frequency for a period of five (5) minutes. No obvious physical damage, leakage or loss in pressure was noted.

The table input vibration levels and the accelerometer output vibration levels at each frequency were recorded on the Vibration Test Data Sheets.

FREQUENCY INPUT INCHES (DOUBLE AMPLITUDE) (Hz) 4 - 15 Hz 0.060 ± 0.012 16 - 25 Hz 0.040 ± 0.008 26 - 33 Hz 0.020 ± 0.004 34 – 40 Hz 0.010 ± 0.002 41 - 50 Hz 0.006 ± 0.000 -0.002

Table 2: Variable Frequency Test Amplitudes

13.3.3 **Endurance Vibration**

Since no response prominences were noted the endurance vibration was performed at the specified upper frequency of 50 Hz for a period of two (2) hours. Upon the completion of the two (2) hour dwell an inspection was performed which revealed no obvious physical damage, leakage or loss in pressure.

The frequency, table input vibration levels, accelerometer output vibration levels and the duration of dwell were recorded on the Vibration Test Data Sheets.

13.4 SECOND MAJOR AXIS OF VIBRATION (VERTICAL AXIS)

13.4.1 Exploratory Vibration

The Pump was vibrated from 4 Hz through 33 Hz with a vibration input of 0.020 ± 0.004 inches (double amplitude) to determine response prominences and from 34 Hz through 50 Hz with a vibration input of 0.006 + 0.000/-0.002 (double amplitude) to determine response prominences. The change in frequency was made in discrete intervals of 1 Hz and the vibration was maintained at each frequency for approximately 15 seconds. No response prominences were noted.

NU Laboratories, Inc. Test Report 10401.1 Page 7

The table input vibration levels and the accelerometer output vibration levels at each frequency were recorded on the Vibration Test Data Sheets

13.4.2 Variable Frequency Vibration

The Pump was vibrated from 4 Hz to 50 Hz with input amplitudes as shown in Table 2. The change in frequency was made in discrete intervals of 1 Hz and the vibration was maintained at each frequency for a period of five (5) minutes. No obvious physical damage, leakage or loss in pressure was noted.

The table input vibration levels and the accelerometer output vibration levels at each frequency were recorded on the Vibration Test Data Sheets.

13.4.3 **Endurance Vibration**

Since no response prominences were noted the endurance vibration was performed at the specified upper frequency of 50 Hz for a period of two (2) hours. Upon the completion of the two (2) hour dwell an inspection was performed which revealed no obvious physical damage, leakage or loss in pressure.

The frequency, table input vibration levels, accelerometer output vibration levels and the duration of dwell were recorded on the Vibration Test Data Sheets.

13.5 THIRD MAJOR AXIS OF VIBRATION (SIDE TO SIDE AXIS)

13.5.1 **Exploratory Vibration**

The Pump was vibrated from 4 Hz through 33 Hz with a vibration input of 0.020 ± 0.004 inches (double amplitude) to determine response prominences and from 34 Hz through 50 Hz with a vibration input of 0.006 + 0.000/-0.002 (double amplitude) to determine response prominences. . The change in frequency was made in discrete intervals of 1 Hz and the vibration was maintained at each frequency for approximately 15 seconds. No response prominences were noted.

The table input vibration levels and the accelerometer output vibration levels at each frequency were recorded on the Vibration Test Data Sheets.

13.5.2 Variable Frequency Vibration

The Pump was vibrated from 4 Hz to 50 Hz with input amplitudes as shown in Table 2. The change in frequency was made in discrete intervals of 1 Hz and the vibration was maintained at each frequency for a period of five (5) minutes. No obvious physical damage, leakage or loss in pressure was noted.

The table input vibration levels and the accelerometer output vibration levels at each frequency were recorded on the Vibration Test Data Sheets.

13.5.3 Endurance Vibration

Since no response prominences were noted the endurance vibration was performed at the specified upper frequency of 50 Hz for a period of two (2) hours. Upon the completion of the two (2) hour dwell an inspection was performed which revealed no obvious physical damage, leakage or loss in pressure.

The frequency, table input vibration levels, accelerometer output vibration levels and the duration of dwell were recorded on the Vibration Test Data Sheets. Refer to the Vibration Test Data Sheets, Figures 5 through 10, for additional information.

Upon completion of the vibration test visual inspection performed revealed no obvious physical damage or discrepancy.

Test Report 10401.1 a Noise Unlimited Company Page 8

Vertical Axis

Pump Shaft Perpendicular to Incline Axis

Pump Shaft Parallel to Incline

Shock Test Setup Photographs Figure 1

FACTORY	FACTORY TEST RECORD:	RD: CLASS HI SHOCK	CK				DATE	TEST #
		A section and a section of		0.000	0.00		14 October 2005	10401.1
1.5 x 1 x 8	20HP NS16	1.1 TEM NAME OF EQUIPMENT SHOCK-TESTED 1.5 x 1 x 8 20HP NS16486-2SA20 Pump		Z. HALING (KW, VOLTS, GPM, CFM, ETC.)	, vol. s, G	A CFM, ETC.)		
			3. MAJOR PARTS	PARTS				
PUMP, ETC.			TESTED FOR Sims Pump Valve Company, Inc.	ADDRESS 1314 Park Avenue Hobcken, NJ 07030	enue 07030		GOV DWG NO	IDENTIFYING #
MOTOR, ETC.			MANUFACTURER	ADDRESS			GOV DWG ND	IDENTIFYING #
STARTER ETC	ď		MANUFACTURER	ADDRESS			GOV DWG ND	IDENTIFYING #
4. CONTRACT NO.	NO.		CONTRACTOR	ADDRESS				
5. TYPE OF SHOCK TEST		☑ ASSEMBLY □ SUB-AS	SUB-ASSEMBLY □ PART					
6. TOTAL WER 534 lbs.	6. TOTAL WEIGHT OF ASSEMBLY T 534 lbs.	ALY TESTED	WEIGHT OF INDIVIDUAL MAJOR PARTS LBS.	MOTOR		'SB'	STARTER	887
7. WEIGHT CL	7. WEIGHT CLASSIFICATION OF ITEM	NE ITEM	8. APPLICABLE MOUNTING FIGURE IN SPECIFICAL	TION MIL-S-901				
I LIGHT IN	MEDIUM		LICHXAA, HIGS DIEXAC, HIGS MIERRET, HIGS MENTAN. 8. FOR LIGHTWEIGHT ITEMS.	S IN FIG 10-1, FIX	516 DFIG.	02 DOTHER		
		FIRST CONDITION	DITON				SECOND CONDITION	
BLOW	DROP	AXIS	DAMAGE INCURRED	BLOW	DROP	AXIS	DAMAGE INCURRED	
TEMS SUBJE	STEMS SUBJECT TO ABOVE TWO C	WO CONDITIONS WERE		REMARKS				
T THE STATE OF	E.	Fig. 13 Fig. 16,	10. FG	10. FOR MEDIUM-WEIGHT ITEMS	3HT ITEMS		Fig. 16.	
BLOWS	GRP#	HAMMER DROP	DAMAGE INCURRED	BLOWS	GRP#	HAMMER DROP	DAMAGE	DAMAGE INCURRED
1	_	1.25	No damage noted	6	III	2.5	No damage noted	
2	11	2.25	No damage noted	7		1.5	No damage noted	
3	111	2.25'	No damage noted	8		2.5'	No damage noted	
4	-	1.5'	No damage noted	6	=	2.5'	No damage noted	
5	11	2.5'	No damage noted					
Figure 13-	TOTAL WEIGHT ON ANVIL TABLE Figure 1	9l.E rre 16- 3,218.5 lbs	REMARKS					
TEST LABOR	TEST LABORATORY NULL aboratories: Inc.		ADDRESS 312 Old Allerton Road, Annandale, NJ 08801	NJ 08801			TEST ENGINEER	- HOTEL
200	(2010)		OIL OIL MINISTER CONTRACTOR					- Instant of

Factory Test Record Figure 2

MIL-S-901D: SHOCK ACCEPTANCE FORM

1.	The item identified below	has met the requi	rements of Militar	y Specification M	IL-S-901, based upon:
		of the item identifi	ed below		
	□ Previous shock t	esting of an item s	similar to the item	identified below	
	(shock test ext	ension)			
	□ Previous shock t	esting of an item i	dentical to the iten	n identified below	
	(shock test ext	ension)			
2.	Item (Nomenclature) Pun	np		_	
3.	Item (Description) 1.5" x	1" x 8 20HP NS 1	6486-2SA20 Pum	<u>p</u>	
4.	Tested For Sims Pump P	ump Company			
5.	Model N/A	6. Size/Capacity _		<u>_</u>	
7.	Serial Number <u>N/A</u> 8.	Revision and Dat	e <u>-</u>	<u>_</u>	
9.	Military Specification	MIL-S-901D			
10.	Ship	11. Sei	rvice		· · · · · · · · · · · · · · · · · · ·
12.	Contract No				
13.	Shock Test FacilityNI	J Laboratories, Inc	<u>e.</u>		
14.	Report No. <u>10401.1</u>				
15.	Previous Shock test approximate Extension approval)				
16.	Test Category	□ Lightweight	⊠Medium weig	ht □ Heavyw	eight
17.	Shock Grade	⊠ A	□В		
18.	Equipment Class	⊠I			
19.	Shock Test Type	⊠ A	□В	□С	
20.	Mounting Location	⊠ Deck	□Hull	□ Shell □ We	tted-Surface
21.	Shipboard mounting plan	e represented duri	ng shock test:		
	⊠Base □ Top	☐ Front or Face ☐ Combination	☐ Back ☐ Other <u>Flan</u>	ged Ends	
	☐ Top Mounting orientation of ite items only): <u>Unrestricted</u>	☐ Combination	☐ Other <u>Flang</u> 's fore-and-aft axi	s (for medium we	ight and heavyweight test –
23.	☐ Top Mounting orientation of ite items only): <u>Unrestricted</u> Approval Limitations:	☐ Combination em relative to ship	☐ Other <u>Flan</u> ; 's fore-and-aft axi	s (for medium we	ight and heavyweight test
23.	☐ Top Mounting orientation of ite items only): <u>Unrestricted</u> Approval Limitations:	□ Combination em relative to ship	☐ Other <u>Flan</u> ; 's fore-and-aft axi	s (for medium we	ight and heavyweight test
23.	☐ Top Mounting orientation of ite items only): <u>Unrestricted</u> Approval Limitations:	□ Combination em relative to ship	☐ Other <u>Flan</u> ; 's fore-and-aft axi	s (for medium we	ight and heavyweight test

Shock Acceptance Form Figure 3

NU Laboratories, Inc.
a Noise Unlimited Company

Test Report 10401.1
Page 11

Vertical Axis Side to Side Axes

End to End Axis

Vibration Test Setup Figure 4

		EXPLORATORY		VAS	NABLE FREQUE	NCY	VIBRAT	ION TEST	DATA SHEET
Hz	INPUT	CH. 1	CH. 2	INPUT	CH. 1	CH. 2			
4	,020	.020		.060	.058		1 ~	JOB NO. 10	101
5	.020	.020		,060	1056		1() 1	DATE 10/6	105
6	1020	1020		1060	1058		41 1 1		TO BACK
7	.020	1020		.060	1058	ļ		AXIS TROM	I TO DICK
8	.010	1020		1060	1058		NILLA	RORATO	ORIES, INC.
9	.020	1020		10/60	1057		4 .		*
10	.020	1020		1060	1058		312 Old All	lerton Hd. Anr 908-713-9	nandale, NJ 0880
11	1050	.020		1060	1050		-	300-7.13-3	
12	1050	,020		.060	1058				
13	1020	1020		1060	1058			NOTE: RECORD	ED DATA
14	,020	1020		1060	.058		IS DO	OUBLE AMPLITU	
15	1020	.020		1060	1058			ENDURANCE	
16	.020	1020		.040	<u>.</u> 040		Hz	INPUT	DURATION
17	,020	1020		1040	.040		.005	.007	2 HR
18	1070	1020	ļ	1040.	1040				
19	1020	1020		1040	1040				
20	1020	.010		040	.040				
21	1020	.020		.040	.040				
22	1,020	1012		.040	041	<u> </u>	_	TEST SPEC	IMEN •
23	.020	,022		040	.041			NOMENCLA	TURE
24	1020	.022		.040	.041		1.5 x 1	v 8 Pw.	ω P
25	1020	1,022		.040	042			X •	
26	1020	.012		020	021		_		
27	1020	.017		020	.021	<u> </u>	L		
28	,020	1022		020	.02/				
29	020	1022		020	,021	<u></u>	SERIAL NO.		
30	,020	.012		020	02/		NS 164	86-25A2	.0
31	.020	1022		070	021				
.32	,020	1052		020	.021	ļ	MANUFACTU	RER	
33	,020	1022		070	.021				
34	1006	.006		.010	011		51M5		
35	.006	,006		.010	.011				
36	,006	1006		010	.011	<u> </u>		CELEROMETER	
37	1000	1006		1010	.0//	Ĺ		of PUMP	HOUSING
38	1006	.007		010	1011	<u> </u>	CH. 2		
39	1C06	.007		019	.013	<u> </u>			
40	.006	,008		010	011	<u> </u>	REMARKS		
41	.006	1008	ļ	000	008		CONT	COPERATI	NG 108 PSI
42	1006	1008		1005	006				
43	.006	1008		000	007	-	THROUG	HOUT TE	5)
44	.006	1008	-	1,006	007	1	-		
45	.006	1008		1.006	007	1	1		
46	1006	,cc8		1.006	800.	1	4		
47	,006	wos		1006	.008	1			
48	1006	.008		006	1005	1	-	A	117
			1	1	1 ~ 1 6	1	TEST ENGINE	드드 네네나	- 6 IIII
49	1006	1006		1006	1008	-	1,52,540	··· -++171	. VVA.

Vibration Test Data Sheet Figure 5

		EXPLORATORY		VAR	MABLE FREQUEN	ICY	VIBRATI	ON TEST	DATA SHEET
Hz	INPUT	CH. 1	CH, 2	INPUT	CH. 1	CH. 2			No. 4
4	1.021	.020		1062	.059			JOB NO. 10	401
5	1021	1020		.002	.059		1() [DATE 10/	0/05
6	1021	1020		1062	1059		11 1 1	AXIS UF	
7	1021	1020		1061	.058			AXIS UF	<u> </u>
8	1020	1019		.060	1058		NITITA	PODAT	ODIES INC
9	1020	.019		1059	,057		4		ORIES, INC.
10	1020	1019	<u> </u>	.058	1056		312 Old Alle		nandale, NJ 0880
11	.020	1019		.058	056		<u> </u>	908-713-9	300
12	1020	.019	1.	1057	.056				
13	.019	1019		.057	1056		N	OTE: RECORD	ED DATA
14	,019	.019		.056	1055			UBLE AMPLITU	
15	1019	1019		056	,055			ENDURANCE	TEST
16	.019	1014	1	.041	.040		Hz	INPUT	DURATION
17	019	1019		.040	,040		50	006	2 HR
18	,019	1019		040	040				
19	1019	,020		040	.040				
20	,014	.020		1040	.040				
21	.014	1020		.040	.040				
22	.019	.020		.040	.040			TEST SPEC	IMEN •
23	,019	1020	1	.040	.040		1	NOMENCLA	
24	.014	107.0		.040	.040		1		
25	.019	,010	1	.040	.040		11521	x 8 20 H	Prop
26	,019	.020		018	019		1		
27	1019	1.020	·	.018	.019		1		
28	.019	1021	 	.018	.019		1		
29	1019	1021	<u> </u>	.018	1019		SERIAL NO.		
30	1019	1021	-	1.018	.019		NS 164	186-25	120
31	1019	1021	 	1018	.019	7 7 7	1.1		
32	,014	021		.018	.019		MANUFACTUR	RER	
33	1.019	,021		.018	0/9				
34	7			1010	1011		51M	5	
35	1006	1006	-	1010	1011		 		
36	1006	1006	 	1010	1011		ACC	ELEROMETER	LOCATIONS
37	1006	.006	-	1010	,011			of Pump	
38	1006	1006	-	010	011		CH. 2	Gi FO II	10031.001
- 39	1006	1006	 	.010			-		
40	1006	.006	1		.01/		REMARKS .		
- 41	1006	.006	1	010	001		-		
42	1006	1006	-	.005			1.		
	1006	1007	-	005					
43	1006	1007		.006		-			
44	cce	.007		006		-			
45	1006	1007		1006	.006	-	-		
46	1006	,007		006	,006		-		
47	1,006	.007	-	006	006				
48	1006	1007		.006	.006		TEST CHOINS	- H/H	-AF
49	1006	.007	-	1006	1006	· · · · · · · ·	TEST ENGINE	:·` +###	
50	,006	1.007		006	006	L	-	TX1	My
		RES.	Hz				SHEET	2	NUI FORM

Vibration Test Data Sheet Figure 6

		EXPLORATORY		VAR	CIABLE FREQUE	NCY .	VIBRAT	TON TEST I	DATA SHEET
Hz	INPUT	CH. 1	CH. 2	INPUT	CH. 1	CH. 2			
4	1501	1020		,057	,055			JOB NO. IC	461
5	1.021	.040		, 057	. 654		1()	DATE 10/1	2/05
6	1022	1021		.057	.054		11 1		
7	1.02.2	1.021		1057	1056			AXIS LIGHT	le fab
8	.022	1501		.657	,056		NITE	RODATO	ORIES, INC.
9	1022	1001	<u> </u>	1057	1056		- 1		•
10	.012	122	<u> </u>	.657	,056		312 Old Al		andale, NJ 0880
11	1027	.ci2		1056	,657			908-713-9	300
12	.622	, or 2		.036	1057				
13	.622	.622		1056	.057			NOTE: RECORDS	ED DATA
14	1022	.622		155	1058			OUBLE AMPLITU	
15	1021	1012		.056	1658			ENDURANCE	TEST
16	150.	1022		1639	(6.41)		Hz	INPUT	DURATION
17	.621	.022		.039	041		50	1005	ZHK
18	1061	.612		.039	04/				
19	.041	1012		077	041			1	
20	.041	.012		075	:04/				
21	1041	.012		377	041				
22	.041	130,	1	.039	071		1.	TEST SPECI	MEN
23	.021	.012	1	079	.041		1	NOMENCLAT	
24	.041	CLL	1	079	.041		1 = 11	8 80.00	
25	1061	.043	1.	.039	1.041		1.5 X 1 X	8 10-11	
26	.041	,013	1	1000	C 23		1		-
27	.641	.643	1	020	012		7		
28	1041	1643	1.	. C2C	C-22	-			
29	150.	,023		020	022		SERIAL NO.		
30	.041	1013	1	020	022		105 16	186-25 A	LC
31.	1.041	.023	1	. 020	022		1		
32	1.021	1.023		0.20	022	200000	MANUFACTU	IRER	
33	1021	1,023	1	.020	.022		1		
34	.666	1006		2009	1070		SIMS		
35	.606	.616	 	.007	010		72		
36	-000	.006	+	.009			AC	CELEROMETER	LOCATIONS
37	1000	.cc 6	1	009	0/0	1	CH. 1 TO F	of Pump	Hausine
38	100	.006		009	:010		CH. 2		
39	006	1006	1	007	0/0				
40	1	T	1		070		REMARKS	·····	
41	1006	.006	1.	1,5V 17	006	-	1		
42	1006	1006	1	00 1	006	7.77	1		
43		.006		-375	201		1		
44	.066			1005	00 b		1		
45	,006	1006	1	:00-	006		1		
46		1006		177	206		1		
47	ott	1006		1015	-306		1.		
48		1607		1.005					
49	1006	1007		0005	.006	1	TEST ENGIN	EER WA	LAA
50	1006	167	1	- J	006		1	-1144	willer
44.00	MULE	1007		- 00	1445	1	1	11/40	47.4

Vibration Test Data Sheet Figure 7

LIST OF APPARATUS

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL DATE	DUE DATE	
Platform Scale	Fairbanks Morse	1124A	G-511379	9/21/05	9/21/06	
Charge Amplifer	Endevco	2721B	DF08	9/21/05	9/21/06	
Charge Amplifer	Endevco	2721B	DF05	9/21/05	9/21/06	
Power Supply	Endevco	4222	AB89	9/21/05	9/21/06	
Torque Wrench	Central Tools	96355	794037102	9/06/05	9/06/06	
Accelerometer	Endevco	2221D	EY61	9/21/05	9/21/06	
Pressure Gauge	Helicoid	0-1000-5	22869E	8/19/05	8/19/06	
Accelerometer	Endevco	2221D	EY62	1/17/05	1/17/06	
Medium Weight Shock Machine	New England Trawler	10-T-3351-C	N/A	Functional		
Torque Wrench	CDI	752MFRMH	1002602828	12/08/04	12/08/05	
Vibration Machine	Unholtz-Dickie	T1000.20	357	Fui	nctional	
Vibration Machine	L.A.B.	RVH-72-5000	51401	Fui	nctional	
Vibration Controller	Data Physics	DP 560	5256	9/15/05	9/15/06	
Accelerometer	Endevco	2223	CB96	9/20/05	9/20/06	
Accelerometer	Endevco	2223	GA33	1/21/05	1/21/06	
Charge Amplifer	Tri Tek	203M	210	8/16/05	8/16/06	
Charge Amplifer	Tri Tek	203M	211	3/21/05	3/21/06	
1 Hour Timer	Gra-Labs	300	300-87061543	3/21/05	3/21/06	

All calibrations are traceable to the National Institute of Standards and Technology. Procedures satisfy the requirements set forth in MIL-STD-45662 or ANSI/NCSL Z540-1. Calibration records are on file at NU Laboratories, Inc.

All weights and scales are traceable to the State of NJ Office of Weights and Measures (NJSA 51:1-61; 75; NJAC 13:47E-1.2)

NU Laboratories, Inc.

a Noise Unlimited Company

Test Report 10401.1

Page 16

PART B.

Hydraulic Tests.

Figure 1. Pump on the Test Stand.

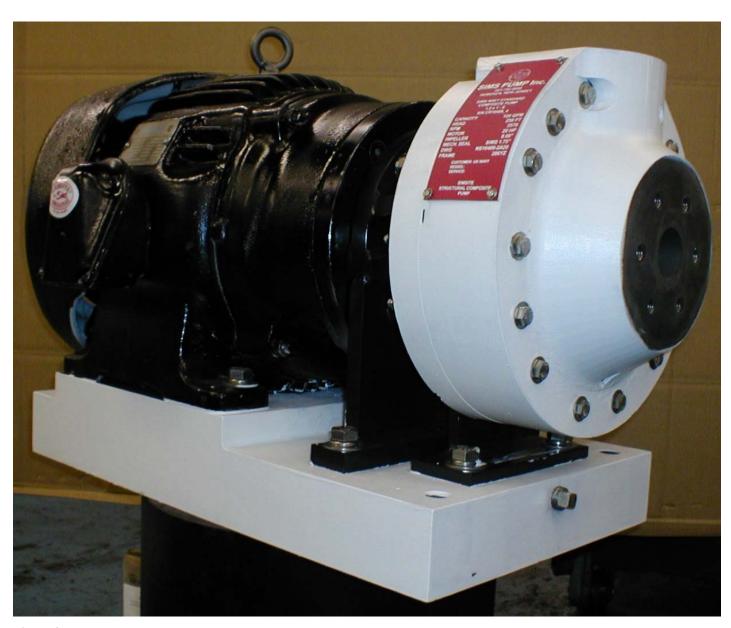


Figure 2. Pump on the Baseplate.

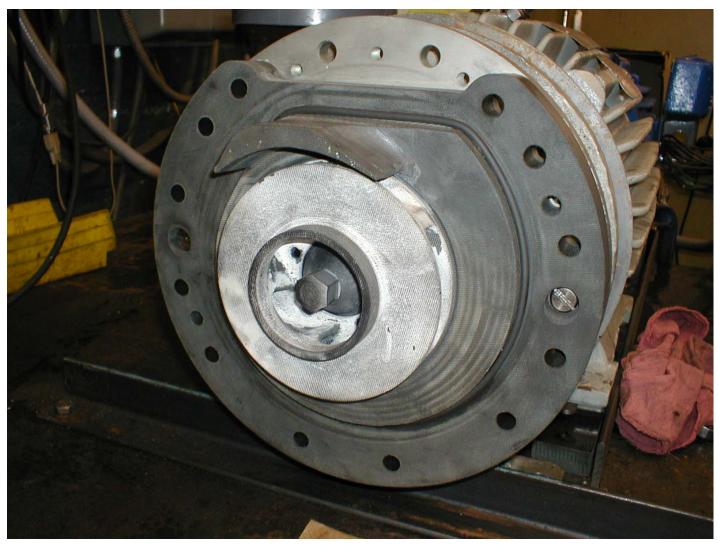


Figure 3. Post-Shock Pump inspection.

Supporting Pre-Test Data. SIMS PUMP VALVE CO., INC. **Sims Pump** NS16486-2A20 **NAVY Standard Composite DFAS Customer:** SIMS Order No.: CR 16486 **NAVY SHOCK TEST** PRETEST INSPECTION REPORT Shock Test per U.S. Navy Mil. Spec. Mil-S-901D Vibration Test full range (4-50 Hz.) per Mil Spec. 167 Type 1 PUMP SIZE: IMP. DIA.: 1.5x1x8 8.00" SERIAL NUMBER: CR16486_1 SIMS ASP/1.750" MECH. SEAL: **BQ1VMG** MOTOR MFG.: Sterling Electric HP: 20 RPM.: 3545 FRAME: 286YZ SERIAL NO.: ENCL.: **TEFC** MOTOR: Bearing, 6310LL Front Bearing, 6310LL Back PICTURE TAKEN OF COMPLETE PUMP ASSEMBLY ...10/18/05..... SHAFT T.I.R.under .001"..... @ IMPELLER END035"..... IMPELLER TO CASING RING CLEARANCE (Front):028"..... IMPELLER TO CASING RING CLEARANCE (Back): HYDROSTATIC TEST - Complete Pump - 30 Mins. @ 120 PSI HYDRAULIC PERFORMANCE TEST - Head, Capacity, BHP DATE: 01/18/05 SIGNED: VS

REMARKS:

Form: QC_PrT_11/27/03

QUALITY CONTROL DEPARTMENT HYDRO TEST REPORT COMPLETE PUMP WITH SEAL

PUMP NAME: NS16486-2A20 SEAL NAME: SIMS ASP/1.750" ORDER No:CR16486

WETTED END MATERIAL: Simsite 302

PRESSURE GAGE SER. No.: LOT SIZE: 1

No.	APPL. PRESSURE	TIME OF TEST	SERIAL NUMBER	LOCATION OF LEAK	TESTED BY	ACC.	REJ.	DATE
	200 psi	30 min.	CR16486_1	No leaks	VS/JW	VS		

Form: QC_HT_11-01/02

Supporting Post-Test Data.

SIMS PUMP VALVE CO., INC.

QUALITY CONTROL DEPARTMENT HYDRO TEST REPORT Post Test COMPLETE PUMP WITH SEAL

PUMP NAME: NS16486-2A20 SEAL NAME: SIMS ASP/1.750" ORDER No: CR16486

WETTED END MATERIAL: Simsite 302

PRESSURE GAGE SER. No.: LOT SIZE: 1

No.	A DDI	TIME OF	CEDIAL	LOCATION	TECTED	400	DEI	DATE
INO.	APPL.	TIME OF TEST	SERIAL	LOCATION	IESIED	ACC.	REJ.	DATE
	PRESSURE		NUMBER	OF LEAK	BY			
	200 psi	30 min	CR16486_1	No leaks	VS/JW	VS		
								\vdash
								\vdash

Form: QC_HT_11-01/02

SIMS PUMP VALVE CO., INC.

Sims Pump NAVY Standard Composite

NS16486-2A20

~		0	+	^	m	^	r	
v	u	3	L	U	111	u		

SIMS Order No.: CR16486

NAVY SHOCK TEST POSTTEST INSPECTION REPORT

Shock Test per U.S. Navy Mil. Spec. Mil-S-901D Vibration Test full range (4-50 Hz.) per Mil Spec. 167 Type 1

PUMP SIZE: 1.5x1x8 IMP. DIA.: 8.00"

SERIAL NUMBER: CR16486-1 MECH. SIMS ASP/1.750"

SEAL:

BQ1VMG

MOTOR MFG.: Sterling Electric HP: 20 RPM.: 3545 FRAME: 286YZ

ENCL.: TEFC SERIAL NO.:

MOTOR: Supplied by NAVSES Bearing, 6310LL

Front

Bearing, 6310LL

Back

PICTURE TAKEN OF COMPLETE PUMP ASSEMBLY

SHAFT T.I.R. @ IMPELLER ENDunder .001"....

IMPELLER TO CASING RING CLEARANCE (Front):010"......

HYDROSTATIC TEST - Complete Pump - 30 Mins. @ 120 PSI

HYDRAULIC PERFORMANCE TEST - Head, Capacity, BHP

DATE: 12/05/05 SIGNED: VS

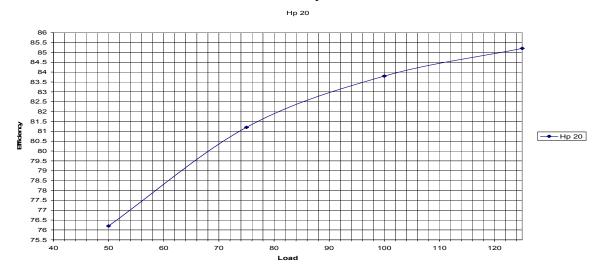
REMARKS:

Form: QC PoT 11/27/03

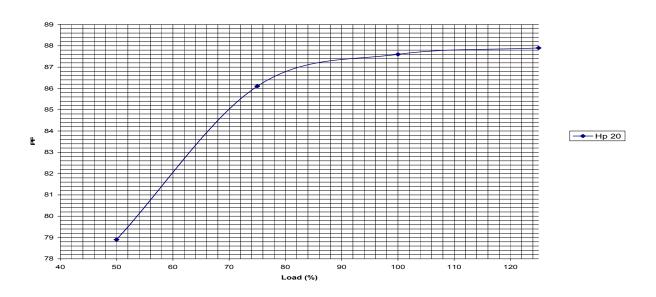
Motor Information.

The 20 HP motor was supplied by Sterling Electric.

This motor has a ductile iron body to satisfy shock test requirements.

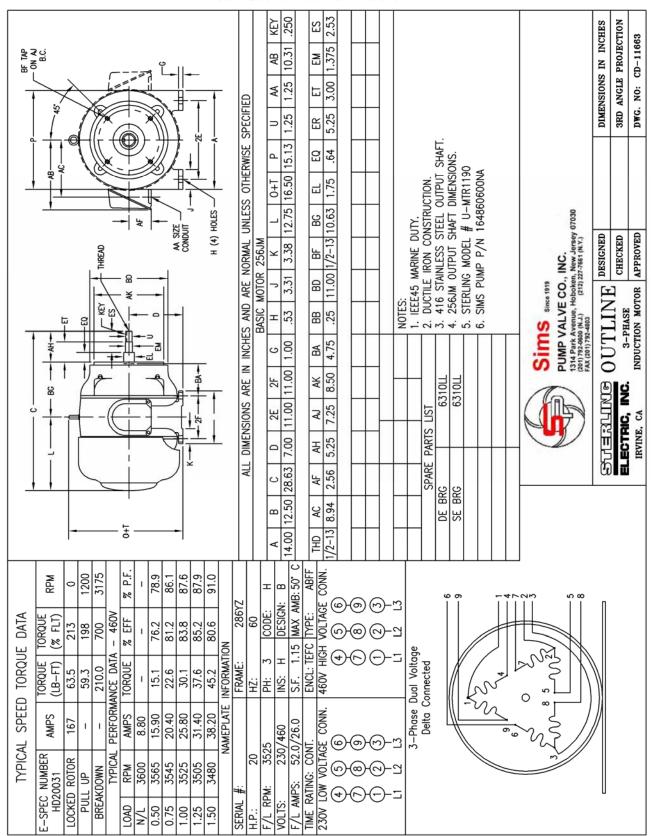

The motor bearings are upgraded to provide higher pump reliability.

The subject motor is rated for 3 phase 230/460 Volts power supply. The pump hydraulic testing facility is equipped with 3phase 230 Volts power. All the tests shown below were done at 238-240 Volts.


To evaluate Pump efficiency the Motor Manufacture diagrams were applied.

Supporting Data for a Electrical Motor.

Motor Efficiency vs. Load.



Motor Power Factor vs. Load.

AC Induction Motor Data.

18.3 Electric Motor Dimensions

SIMSITE Structural Composite Pump NAVY Standard Composite Pump. NS16486-2A20 1.5x1-8 20 hp 3570 rpm

11011 0 20 mp 00 10 1pm

General

The inspection of the subject pump was performed without incident. All tolerances were found to be within acceptable guidelines. The pump showed no visible signs of wear after Shock Test, Vibration Test and 1000 hours of performance testing.

Pump Design

The subject pump is built by SIMS Pump Co. from SIMSITE Structural Composite.

All wetted parts of the pump, except the Casing Rings and Shaft Sleeve were made from SIMSITE 302 Structural Composite. The Casing Rings and the Sleeve are made from SIMSITE 375 Structural Composite. The Pump Baseplate is manufactured from a solid block of SIMSITE 302 Structural Composite.

The Pump is equipped with SIMSITE Mechanical Cartridge Type Seal. The Seal is specially designed for the subject pump to match the outstanding corrosion resistance of the pump.

The Seal Gland and the Sleeve are made from SIMSITE Structural Composite.

SIMSITE Structural Composite Cartridge Mechanical Seal.

The SIMSITE Structural Composite Pump is equipped with a SIMSITE Structural Composite Cartridge Mechanical Seal.

The SIMSITE Cartridge Mechanical Seal provides the following benefits when compared with standard spring loaded seals:

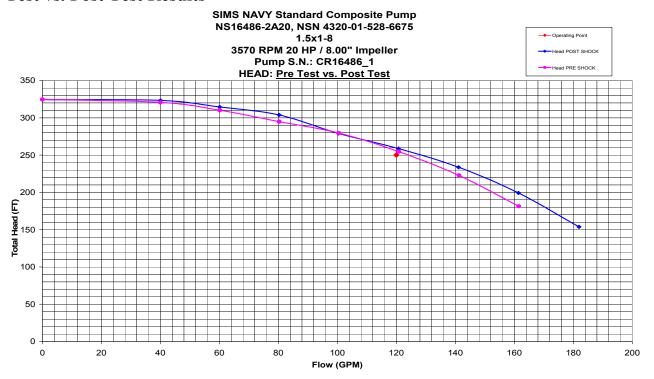
- 1. The Cartridge Seal is more reliable.
- 2. The Cartridge Seal is easier to install and maintain.
- 3. The Cartridge Seal can be inspected with out pump disassembly.
- 4. SIMSITE Cartridge Seals are self aligning on the shaft, and therefore do not require installation fixtures.
- **5.** The Seal Gland and Sleeve components are made from SIMSITE Structural Composite and therefore will not corrode in seawater.

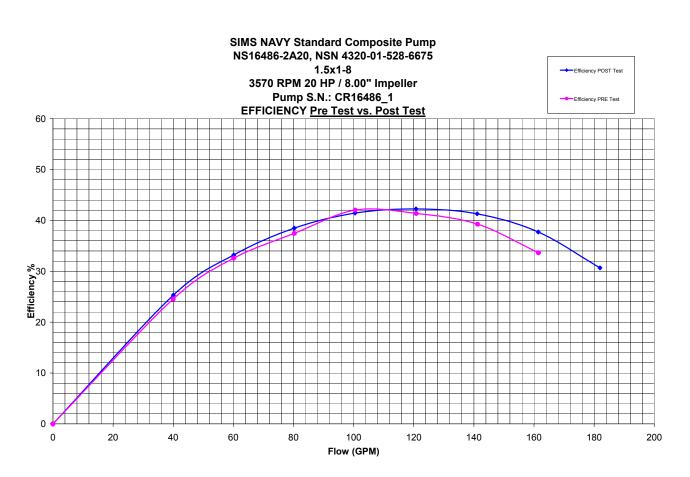
SIMSITE Structural Composite Cartridge Mechanical Seal, offers superior design and performance when compared with a standard spring loaded seal.

Pump Hydraulic Performance.

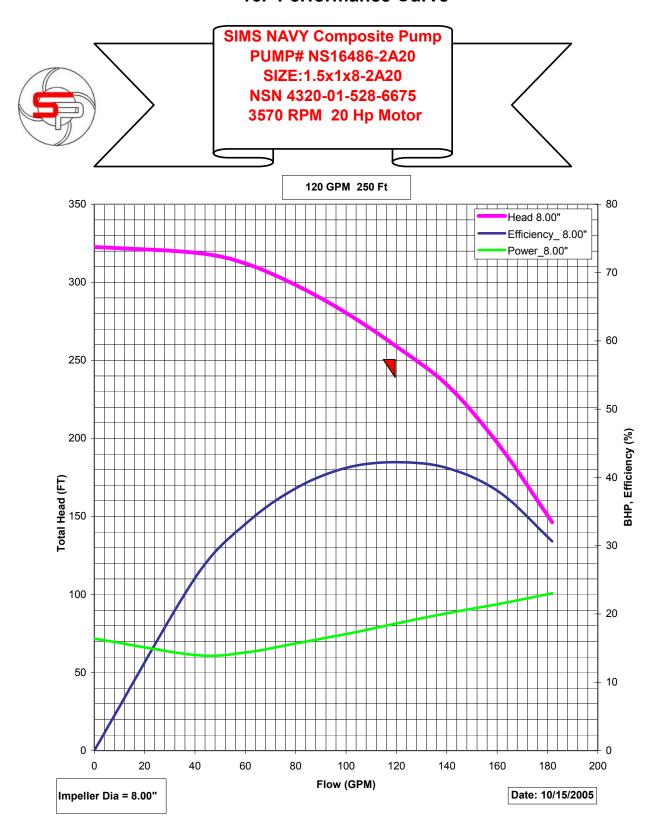
The subject Pump has a Best Efficiency Point 120 GPM - 250 FT at 3570 RPM.

The hydraulic performance test data indicates that the total dynamic head is slightly higher after 500 hours of post shock performance testing. This probably attributed to a slight Closing of the Clearance between the Impeller and Casing Rings at the end of the testing period.

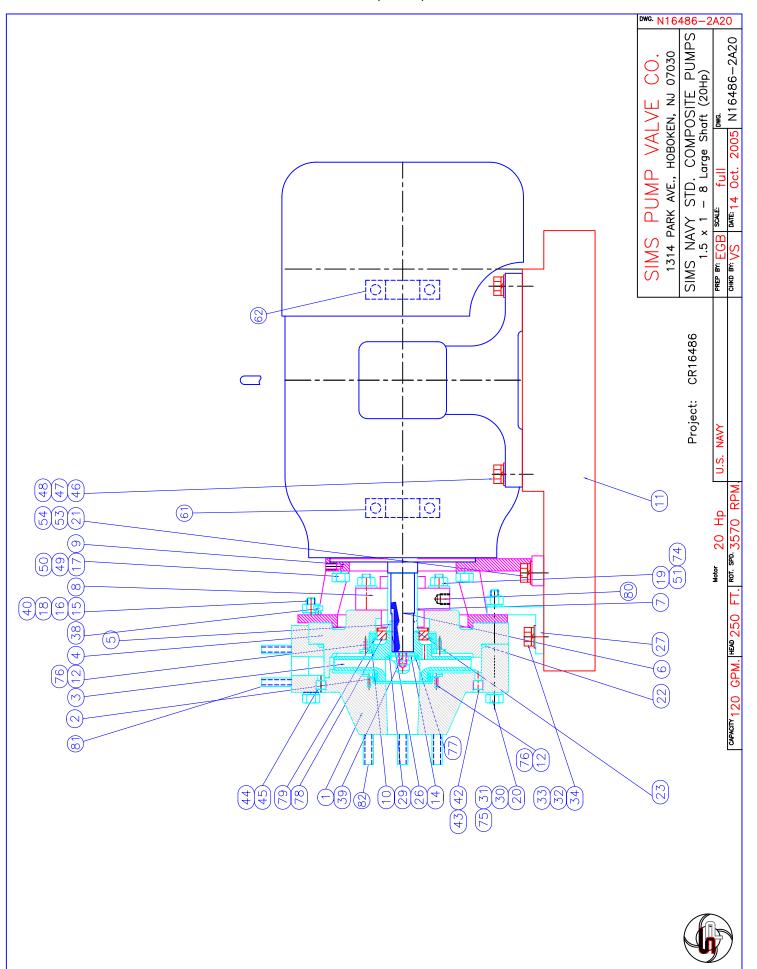

The SIMS Standard NAVY Composite Pump is a Close Coupled design.


Test Horsepower was calculated using the following formula:

Horsepower = (.732/.746) x Volts x Amps x Efficiency x Power Factor,


Where Efficiency is a Motor Efficiency and is taken from a "Motor Efficiency vs. Load" diagram. Power Factor is a Motor Power Factor and was measured during tests.

Pre-Test vs. Post Test Results


16. Performance Curve

Part List.

Part List N16486-2A20

	T				
Item	Q'ty	Description	Part Number	Material	
				Code	
1	1	Casing	164860101NS	SMS 302	
2	1	Casing Ring	164860102NS	SMS 375	
3	1	Impeller	164860300NS	SMS 302	
4	1	Casing Cover	164860401NS	SMS 302	
5	1	Key, Sleeve	164860701NM	SMS1	
6	1	Electric Motor	164860600NA	SMSA	
7	1	Shaft Sleeve	164860700NS	SMS 375	
8	1	Cartridge Seal	164860800NA	SMSA	
9	1	Frame Adapter	164860900NM	SMS1T	
10	1	Wearing Ring	164860406NS	SMS 375	
11	1	Base Plate	164861100NS	SMS302	
12	4	Screw	164860114NN	SMSN	
14	1	Impeller Nut	164861401NS	SMS375	
15	12	Hex Head Bolt	164860103NM	SMS1	
16	24	Flat Washer	164860104NM	SMS1	
17	4	Hex Head Bolt	164860602NM	SMS1	
18	12	Lock Washer	164860105NM	SMS1	
19	4	Stud	164860802NM	SMS1	
20	2	Hex Head Bolt	164860106NM	SMS1	
21	2	Hex Head Bolt	164860902NM	SMS1	
22	1	O-Ring, Casing Cover	164860404NR	SMSB	
23	1	O-Ring, Sleeve	164860702NR	SMSB	
26	1	Key, Impeller	164860399NM	SMS1	
27	1	Casing Support	164860107NM	SMS1T	
29	1	O-Ring, Impeller	164861402NR	SMSB	
30	2	Nut	164860109NM	SMS1	
31	2	Lock Washer	164860110NM	SMS1	
32	2	Lock Washer		SMS1	
33	2		164861103NM	SMS1	
		Flat Washer	164861104NM		
34	2	Hex Head Bolt	164861105NM	SMS1	
38	2	Jacking Bolt	164860905NM	SMS1T	
39	1	Stud, Shaft	164860605NM	SMS1	
40	12	Nut	164860115NM	SMS1	
42	1	Plug, Drain	164860111NM	SMS1T	
43	1	O-Ring, Drain Plug	164860116NR	SMSB	
44	1	O-Ring, Vent Plug	164860117NR	SMSB	
45	1	Plug, Vent	164860113NM	SMS1T	
46	4	Hex Head Bolt	164861106NM	SMS1	
47	4	Lock Washer	164861107NM	SMS1	
48	4	Flat Washer	164861108NM	SMS1	
49	4	Lock Washer	164860603NM	SMS1	
50	4	Flat Washer	164860604NM	SMS1	
51	4	Flat Washer	164860803NM	SMS1	
53	2	Flat Washer	164860903NM	SMS1	
54	2	Lock Washer	164860904NM	SMS1	
61	1	Bearing, Motor (D.E.)	164860601NA	SMSA	
62	1	Bearing, Motor (O.D.E.)	164860602NA	SMSA	
74	4	Nut	164860804NM	SMS1	
75	4	Flat Washer	164860118NM	SMS1	
76	4	Flat Washer	164860119NP	SMSP	
77	1	Snap Ring	164860302NS	SMS 375	
78	1	Spiraltrac	164860407NT	SMSV	
79	1	Snap Ring, Spiraltrac	164860408NS	SMS 375	
80	1	Plug, Seal Cartridge	164860801NM	SMS1T	
81	4	Studs, Discharge	164860120NM	SMS1	
82	6	Studs, Suction	164860121NM	SMS1	
	1	Cartridge Seal Kit	164860001NA	SMSA	
	1	Impeller/Wear Ring Kit	164860002NA	SMSA	
	1	Complete Pump w/ Motor	NS16486-2A20	SMSA	
	_ '	Tompioto i ump W/ Wotol	11010700 2/120	SIVIO/ \	

Issue Date: October 2005